Es una pregunta que se repite especialmente durante estos días en que se cumplen 10 años del terremoto y posterior tsunami de Fukushima.

Durante décadas, especialistas en geología y geofísica han investigado cuál es la mejor manera de detectar anticipadamente los movimientos telúricos que ocasionan estas grandes tragedias.

La mayoría de los sismógrafos están en tierra y su construcción y mantenimiento son muy costosos, por lo que desde hace algunos años se viene experimentando con el millón de kilómetros de cable submarino que se utiliza para las comunicaciones alrededor del mundo.

Publicidad

Y uno de los mayores y más recientes acercamientos a ese objetivo lo ha logrado un equipo de geofísicos del Instituto de Tecnología de California (Caltech) liderado por el sismólogo Zhongwen Zhan.

El grupo de Caltech ha estado experimentando con un cable de 10.000 km de extensión recientemente instalado a lo largo de las costas del Pacífico, desde Los Ángeles hasta Santiago de Chile.

El ángulo de su investigación no tiene que ver con el cable en sí sino con lo que éste conduce, luz a través de la fibra óptica encendida.

Publicidad

Lo que vimos es que los cables pueden ser utilizados como sensores para detectar las anomalías en la luz que transportan, que se producen cuando ocurre un terremoto”, le dijo Zhan a la BBC.

Se estima que en el mundo hay más de un millón de kilómetros de cables instalados en el fondo de los oceános. Foto: GETTY IMAGES

“Y no solo esto, sino que también pueden funcionar como una forma más eficaz de informar a las posibles comunidades afectadas de la inminencia de un movimiento telúrico”, añadió.

Publicidad

Durante nueve meses de trabajo, el equipo de Zhan logró detectar 20 terremotos, incluido el que afectó a Jamaica en enero de 2020, simplemente analizando la oscilación de la luz que va por este extenso cable submarino.

Pero, ¿cómo es que realmente los cables submarinos se pueden convertir en detectores eficaces de detectores de terremotos?

Polarización electromagnética

El equipo de Zhan estuvo buscando la forma de utilizar el cable submarino como un sensor de movimientos de la corteza terrestre.

Para lograrlo, monitorearon una variable conocida como la polarización electromagnética, que es básicamente la orientación de la luz mientras se mueve en ondas.

Publicidad

“Lo que buscan los cables submarinos es transmitir la mayor cantidad de datos a través de la fibra óptica y la forma en que se monitorea que esto ocurra es analizando la estabilidad de los pulsos de luz que van dentro de estos cables”, señala el científico de Caltech.

En tierra cualquier perturbación como un trueno o un incluso un cambio de temperatura puede alterar esa polarización electromagnética dentro de un cable de fibra de óptica, pero en el fondo del mar, las cosas son distintas y la estabilidad es mucho mayor.

La fibra óptica revolucionó la forma de comunicarnos. Foto: GETTY IMAGES

“Cualquier perturbación o cambio durante el monitoreo de la polarización electromagnética dentro de un cable submarino significa un sismo”, añade.

Pero no es la única ventaja de esta red. La velocidad juega un papel fundamental.

En este entramado de cables submarinos la luz también funciona como pulsos de información que pueden entregar datos a una velocidad de 200 mil kilómetros por segundo.

“Si percibe un cambio, puede transmitirlo a una velocidad increíble. O sea, puede ser una herramienta de prevención efectiva”, agrega el científico.

Una red ya lista

Sin embargo, para Zhan el gran aporte de esta investigación es que, para aplicar esta tecnología en la solución de un problema que lleva desvelando a los científicos desde hace mucho, no es necesario ni construir ni añadir una red de detección de terremotos, porque esas polarizaciones electromagnéticas ya se están monitoreando.

“Esta nueva forma de análisis puede convertir a la mayoría de los cables submarinos en sensores geofísicos de miles de kilómetros de largo para detectar terremotos y posiblemente tsunamis en el futuro”, dijo Zhan.

Otra de las ventajas de esta tecnología es la velocidad con que se transmiten los datos. Foto: GETTY IMAGES

“Para nosotros este es el punto más importante de lo que publicamos: en comparación con algunas otras tecnologías, ésta no necesita agregar un nuevo equipo ni enviar nuevas piezas para ser instaladas”, agregó.

Sin embargo, los científicos son claros al señalar que quedan tareas pendientes, como determinar con exactitud la magnitud del terremoto que se identifica y establecer una manera estándar de medición que sea compatible con los sistemas de detección que están instalados en la superficie de la Tierra.

Además, el clima es una variable de la que necesitamos más datos para saber si influye en la estabilidad de los cables submarinos”, señala Zhan.

“Esta tecnología detecta muy bien los terremotos si están cerca del cable e incluso si hay algo de lluvia. Pero en el caso de un tsunami, por ejemplo, debido a que una ola puede durar un periodo muy largo, no sabemos aún si este instrumento lo puede detectar de igual manera”.